一、Bispecific antibodies introduction
Bispecific antibodies usually do not occur in nature but are constructed by recombinant DNA or cell-fusion technologies. Most are designed to recruit cytotoxic effector cells of the immune system effectively against pathogenic target cells. This complex task explains why, after more than 15 years of extensive research, many different formats of bispecific antibodies have been developed but only a few have advanced to clinical trials. Here, we give a brief history of bispecific antibodies and review very recent progress towards formats that are beginning to solve the major issues of earlier formats. These improved bispecific antibodies are expected to show clinical efficacy in patients with cancer and other diseases, in a way that monoclonal antibodies have shown in recent years.
Until now, the hybridoma technology invented by Ko¨hler and Milstein to generate monoclonal antibodies has nourished the hope for therapeutic breakthroughs in diseases with high medical needs not served sufficiently by conventional therapies. The hallmark of monoclonal antibodies is their specific binding to a particular antigen, which enables them to find their target precisely in vivo while ignoring antigen-negative sites. Bound to a target, therapeutic antibodies can deliver a toxic payload, act as agonists or antagonists of receptors, or as neutralizers of ligands. Antibodies might even bind many targets that are not recognizable by small-molecule drugs.
Monoclonal antibodies of the IgG type contain two identical antigen-binding arms and a constant fragment, (Fc)g. The Fc part enables the antibody to function as an adaptor protein, linking antibody-bound cells to immune cells bearing Fcg receptors. Because there are different Fcg receptors and other proteins binding to Fc portions of antibodies, such as complement, monoclonal antibodies can mediate multiple effects ranging from the recruitment of immune effector functions to mere increase of serum half-life by retention of IgG on non-signaling Fc receptors. It was observed recently that human antibodies of the IgG4 type can exchange their halves with each other, potentially creating antibodies with dual specificity [2]. However, the biological relevance of this observation remains obscure.
For treatment of malignant diseases, monoclonal antibodies typically need to be modified to enhance efficacy and to use them in humans. One important modification is the reduction of immunogenicity of rodent monoclonal antibodies by chimerization, humanization throughgrafting of complementarity determining regions (CDRs) or using various technologies for recovery of fully human antibodies, such as phage display libraries or transgenic mice expressing human antibody repertoires. Reduced immunogenicity of antibodies can prolong their half life and, in the absence of a neutralizing immune response, enable prolonged treatment. Another important modifi-cation is arming the humanized antibody with additional cytotoxic mechanisms, be it radioisotopes, bacterial toxins,
inflammatory cytokines, chemotherapeutics or prodrugs. There is a growing number of approved cancer therapeutics that are efficacious either as chimerized antibody or humanized IgG1,or as conjugate with chemotherapeutics or a radioisotope. In spite of this progress, the efficacy of monoclonal antibodies for cancer treatment is still limited, leaving great potential for further improvements. One class of antibody derivatives with the promise of enhanced potency for cancer treatment are bispecific antibodies.
二、雙特異抗體簡介
雙特異抗體(Bispecific antibody)是含有兩個不同配體結合位點的免疫球蛋白分子。自然狀態下不存在雙特異性抗體,只能通過特殊方法進行制備。以往雙特異抗體的制備方法有化學交聯法,雜合F(ab')2 分子法和鼠雜交瘤法等。化學交聯法生產雙特異抗體的異源性,批與批之間的不穩定性,以及抗體特異性易受某些修飾或不當連接而改變的特性,使得該法生產的雙特異抗體不適于體內使用。以巰基交聯蛋白酶消化片斷F(ab')生產的雙特異雜交分子,成分雖較均一,但費時費力,且產量很低。雜交瘤法生產的雙特異抗體,來源可靠,但由輕鏈、重鏈隨機配對產生的多種可能抗體形式,使得雙特異抗體生產、純化變得非常困難。
隨著基因工程抗體技術研究的深入,尤其是單鏈抗體的出現,為基因工程雙特異單鏈抗體的研制奠定了基礎。單鏈抗體(Single2Chain Fv,scFv)是利用DNA 重組技術將抗體重鏈可變區(VH)和輕鏈可變區(VL)基因通過一短肽鏈(linker)連接后融合表達出來的抗體片斷。近年來,將噬菌體展示技術(phage display)應用于svFv 篩選,可直接從雜交瘤和外周血淋巴細胞提取mRNA,構建單鏈抗體庫,從而更易獲得高特異性、高親合力scFv。scFv 有與天然抗體相同的抗原結合特征,同時缺乏Fc段,具有分子量小,穿透力強,體內循環半衰期短及免疫原性低等特點,且易與效應分子相連構建多種新功能抗體分子,是構建免疫毒素或雙特異抗體的理想元件。因而,近年來scFv 已成為抗體研究領域內的熱點。根據不同研究、應用目的,采用基因工程、蛋白質工程方法,將兩條不同來源的svFv 組合成具有兩種不同抗原結合特征的新型抗體即為雙特異單鏈抗體(bispecific single2chain Fvs ,bisFvs)。bisFvs 分子是僅相當于F(ab)大小,由于其具有*的與兩個抗原位點結合的能力,因此無論是作為導向藥物載體,效應細胞識別、連接,還是作為免疫阻斷抗體,免疫診斷試劑等等,都具有更為廣闊的應用前景。目前,人們已在許多領域,尤其是腫瘤的診斷、治療等方面對bisFvs 的應用進行了償試。
三、雙特異單連抗體的制作方法
制備bisFvs 的核心是將兩條scFv 以一定方式連接起來,并使其各自保留與特異性抗原結合的能力。長期以來,隨著抗體工程技術的發展,人們對基因工程bisFvs 的制作方法進行了多種探討,逐步摸索出了一些成功的制作途徑。按bisFvs 分子連接方式的不同,可將這些途徑歸為3 類
1、非共價健二聚體
這一方法zui早由Huston 以及Holliger 等創建,制備出名為“雙體”(diabody)的雙特異抗體,隨后在一些研究中得到進一步探討和應用。其方法是用一短的氨基酸linker (3 - 15 氨基酸)將一抗體的重鏈(VHA)與另一抗體的輕鏈(VLB )連接起來,構成雜合scFv ,同樣再以VLA 和VHB 構建雜合scFv ,兩條雜合scFv 在同一表達系統,同時分別表達,由于短的linker 的限制,同一條肽鏈內的兩個V 區之間不能匹配,只能與另一條雜合scFv 中相應同源V 區相匹配,重新聚合成具有兩個抗原結合位點的二聚體。通過分泌性原核表達體系,可直接獲得有功能的bisFvs 分子。經計算機摸擬分析,兩scFv 呈兩個位點相背的空間結構。另外,研究表明,減少linker 長度至3 個氨基酸以下,還可獲得三聚體或四聚體多特異性抗體。該設計方法已成功應用于腫瘤特異性抗原及效應細胞相互作用等多項研究中。然而,也有人認為,該設計中片段之間為非共價連接,其穩定性較差;短的linker 將限制其柔韌性,并進而對兩細胞間連接造成負面影響。在折疊過程中,非匹配的VH、VL 片段之間的相互作用也可能對雙特異抗體的形成產生不利影響,且體系中會有一些單體及不同聚合體成份的污染。
2、共價連接雙特異單鏈抗體
該方法在首先獲得有功能的scFv的基礎上,根據特定研究目的,將兩種具有不同抗原結合特征的scFv ,用一段多肽linker直接連接起來,在原核或真核表達體系進行表達,經必要的復性或純化過程,就可獲得bisFvs。該方法的關鍵是要選擇有一定的柔韌性,不影響兩端scFv復性、結合特征的適當linker。目前用于該設計方法的linker 有:25 氨基酸殘基的205c linker,以2C11CH1片段為主的23 氨基酸殘基linker,24氨基酸殘基的CBH1 linker,114氨基酸殘基的ETA Ⅱ區段linker,(Gly4Ser)3及Ser2 (Gly4Ser)3linker等,均獲得了有功能的雙特異抗體分子。Coloma等將一種scFv直接融合表達于另一種scFvC 端或鉸鏈區之后也獲得了有功能的bis2Fv。Helfrich 等還構建了專門用于表達bisFvs的載體,可直接將兩個scFv片段克隆于該載體的兩個克隆位點,兩位點之間是一固定的25 氨基酸殘基linker,經克隆表達,就可生產出各種bisFvs ,使得這一過程得以程式化。由于本設計中,兩scFv之間以共價鍵相連,因而相對于diabody ,其穩定性會有所提高,更易于純化和大量生產。較長片段linder的應用也使兩抗體間有較大的自由度。
3、應用亮氨酸拉鏈、螺旋-轉角-螺旋等蛋白質結構域將兩單鏈抗體連接起來
Kruif等將小鼠IgGC3上段鉸鏈區和Fos或Jun亮氨酸拉鏈區融合于scFv蛋白,建立了依賴亮氨酸拉鏈的二聚化設計方案,可以將從噬菌體抗體篩選出的scFv直接克隆入該系統,獲得二聚化biscFvs。Kosny、Pack等也都以亮氨酸拉鏈結構域為基礎成功獲得了bisFvs。Kalinke、Pack等將螺旋-轉角-螺旋結構融合于兩條單鏈抗體C端經大腸桿菌表達系統,就可聚合表達出bisFvs。Dubel等將核心2鏈親合素與scFv片段融合表達,該嵌合蛋白可形成四聚體,其C端插入的半胱氨酸,使其具有形成共價雙功能分子的能力。
相關產品
免責聲明
- 凡本網注明“來源:化工儀器網”的所有作品,均為浙江興旺寶明通網絡有限公司-化工儀器網合法擁有版權或有權使用的作品,未經本網授權不得轉載、摘編或利用其它方式使用上述作品。已經本網授權使用作品的,應在授權范圍內使用,并注明“來源:化工儀器網”。違反上述聲明者,本網將追究其相關法律責任。
- 本網轉載并注明自其他來源(非化工儀器網)的作品,目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網站或個人從本網轉載時,必須保留本網注明的作品第一來源,并自負版權等法律責任。
- 如涉及作品內容、版權等問題,請在作品發表之日起一周內與本網聯系,否則視為放棄相關權利。