技術文章
?AquaPen手持式葉綠素測量儀價格
閱讀:987 發布時間:2022-5-17AquaPen手持式葉綠素測量儀價格
AquaPen AP110手持式藻類熒光測量儀是一款用于快速、測量水體藻類與藍藻葉綠素熒光參數的手持式熒光儀。AquaPen有兩種探頭型號。AP110-C配備比色杯試管測量室,將要測量的水體、懸濁液或培養溶液采集到比色杯中進行測量,配備455nm藍色和620nmLED紅色光源,既可以測量葉綠素熒光,又可以測量680nm和720nm光密度。AP110-P配備了浸入式光學探頭,可直接插到要測量的水體、懸濁液或培養溶液中進行測量,也可測量大型藻類。
AquaPen 具備高的敏感度,可檢測0.5μg Chl/L的葉綠素熒光,可以檢測浮游植物濃度低的自然水體,可用于野外和實驗室測量。
AquaPen采用調試式熒光測量技術,可設置多種參數,方便測量多種植物葉綠素熒光。外觀小巧,方便攜帶,設計新穎,操作簡單,經濟耐用,精度高穩定性好。
應用域
· 藻類、藍藻光合特性研究
· 水體藻類含量檢測
· 光合突變體篩選與表型研究
· 生物和非生物脅迫的檢測
· 藻類抗脅迫能力或者易感性研究
· 經濟藻類育種、病害檢測、長勢與產量評估
· 教學
功能特點:
§ 結構緊湊、便攜性強,LED光源、檢測器、控制單元集成于僅手機大小的儀器內,重量僅290g
§ 功能強大,是葉綠素熒光技術的結晶產品,具備了大型熒光儀的所有功能,可以測量所有葉綠素熒光參數
§ 內置了所有通用葉綠素熒光分析實驗程序,包括兩套熒光淬滅分析程序、3套光響應曲線程序、OJIP–test等
§ 高時間分辨率,可達10萬次每,自動繪出OJIP曲線并給出26個OJIP–test參數
§ AquaPen兩種探頭型號:比色杯試管測量室,既可以測量葉綠素熒光,又可以測量680nm和720nm光密度;浸入式光學探頭,可直接插到要測量的水體、懸濁液或培養溶液中進行測量,也可測量大型藻類
§ FluorPen業軟件功能強大,可下載、展示葉綠素熒光參數圖表,也可以通過軟件直接控制儀器進行測量
§ 具備無人值守自動監測功能
§ 內置藍牙與USB雙通訊模塊, GPS模塊,輸出帶時間戳和地理位置的葉綠素熒光參數圖表
§ 可選配水下自動監測式熒光儀,防水防塵設計,深度10m
測量程序與功能
· Ft:瞬時葉綠素熒光,暗適應完成后Ft=F0
· QY:量子產額,表示光系統II 的效率,等于Fv/Fm(暗適應狀態)或ΦPSII (光適應狀態)。
· OJIP:快速熒光動力學曲線,用于研究植物暗適應后的快速熒光動態變化
· NPQ:熒光淬滅動力學曲線,用于研究植物從暗適應到光適應狀態的熒光淬滅變化過程。
· LC:光響應曲線,用于研究植物對不同光強的熒光淬滅反應。
· OD:光密度,反映藻類密度(限AP110-C)。
技術參數
· 測量參數包括F0、Ft、Fm、Fm’、QY、QY_Ln、QY_Dn、NPQ、Qp、Rfd、Area、Mo、Sm、PI、ABS/RC等50多個葉綠素熒光參數,OD680和OD720(限AP110-C)及3種給光程序的光響應曲線、3種熒光淬滅曲線、OJIP曲線等
· OJIP–test時間分辨率為10µs(每10萬次),給出OJIP曲線和26個參數,包括F0、Fj、Fi、Fm、Fv、Vj、Vi、Fm/F0、Fv/F0、Fv/Fm、Mo、Area、Fix Area、Sm、Ss、N、Phi_Po、Psi_o、Phi_Eo、Phi–Do、Phi_Pav、PI_Abs、ABS/RC、TRo/RC、ETo/RC、DIo/RC等
· 測量程序:Ft、QY、OJIP、NPQ1、NPQ2、NPQ3、LC1、LC2、LC3、OD680和OD720(限AP110-C)、Multi無人值守自動監測
· 測量光:每測量脈沖光強0.09µmol(photons)/m2.s,10-100%可調
· 光化學光:10–1000µmol(photons)/m2.s可調
· 飽和光:光強3000µmol(photons)/m2.s,11-100%可調
· 探頭型號:AP110-C試管式、AP110-P探頭式
· 光源:AP110-C:620nm紅光和455nm藍光測量葉綠素熒光,680nm和720nm紅外光測量OD;AP110-P:455nm藍光
· 試管容積(限AP110-C):4ml
· 葉綠素熒光檢測限:0.5μg Chl/L
· 檢測器:PIN光電二管,667–750nm濾波器
· 尺寸大小:超便攜,手機大小,165×65×55mm(不包括探頭),重量僅290g
· 數據存儲:容量16Mb,可存儲149000數據點
· 顯示與操作:圖形化顯示,雙鍵操作,待機5分鐘自動關閉
· 供電:2000mA可充電鋰電池,USB充電,可連續工作48小時,低電報警
· 工作條件:0–55℃,0–95%相對濕度(無凝結水)
· 存貯條件:-10–60℃,0–95%相對濕度(無凝結水)
· 通訊方式:藍牙+USB雙通訊模式,藍牙在20m距離傳輸速度3Mbps
· GPS模塊:內置,精度1.5m
· 軟件:FluorPen1.1用軟件,用于數據下載、分析和圖表顯示,輸出Excel數據文件及熒光動力學曲線圖,適用于Windows 7及更高操作系統
操作軟件與實驗結果
南Mendel站使用AquaPen葉綠素熒光儀監測南溫度升高對地衣/藻類的影響
產地: 歐洲
參考文獻
1. Zhang, C., Huang, X., Chu, Y., Ren, N. & Ho, S.-H. An overlooked effect induced by surface modification: different molecular response of Chlorella pyrenoidosa to graphitized and oxidized nanodiamonds. Environ. Sci.: Nano 10.1039.D0EN00444H (2020)
2. Arakaki, A. et al. Analysis of UV irradiation-induced cell settling of an oleaginous diatom, Fistulifera solaris, for efficient biomass recovery. Algal Research 47, 101834 (2020)
3. Contreras, J. A. & Gillard, J. T. F. Asparagine-based production of hydrogen peroxide triggers cell death in the diatom Phaeodactylum tricornutum. Botany Letters 1–12 (2020)
4. Moraes, L. et al. Bioprocess strategies for enhancing the outdoor production of Nannochloropsis gaditana: an evaluation of the effects of pH on culture performance in tubular photobioreactors. Bioprocess Biosyst Eng (2020)
5. Yaisamlee, C. & Sirikhachornkit, A. Characterization of Chlamydomonas Very High Light-tolerant Mutants for Enhanced Lipid Production. J. Oleo Sci. 69, 359–368 (2020)
6. Xu, M. et al. Co-culturing microalgae with endophytic bacteria increases nutrient removal efficiency for biogas purification. Bioresource Technology 314, 123766 (2020).
7. González-Camejo, J., Barat, R., Aguado, D. & Ferrer, J. Continuous 3-year outdoor operation of a flat-panel membrane photobioreactor to treat effluent from an anaerobic membrane bioreactor. Water Research 169, 115238 (2020).
8. Deng, X. et al. C*tion of Chlorella sorokiniana using wastewaters from different processing units of the silk industry for enhancing biomass production and nutrient removal. J Chem Technol Biotechnol 95, 264–273 (2020).
9. Tiwari, S., Verma, N., Prasad, S. M. & Singh, V. P. Cytokinin alleviates cypermethrin toxicity in Nostoc muscorum by involving nitric oxide: Regulation of exopolysaccharides secretion, PS II photochemistry and reactive oxygen species homeostasis. Chemosphere 259, 127356 (2020).
10. Wu, Y., Zhang, M., Li, Z., Xu, J. & Beardall, J. Differential Responses of Growth and Photochemical Performance of Marine Diatoms to Ocean Warming and High Light Irradiance. Photochem Photobiol php.13268 (2020)
11. Abiusi, F., Wijffels, R. H. & Janssen, M. Doubling of microalgae productivity by oxygen balanced mixotrophy. ACS Sustainable Chemistry & Engineering 8, 6065–6074 (2020).
12. Rolton, A. et al. Early biomarker indicators of health in two commercially produced microalgal species important for aquaculture. Aquaculture 521, 735053 (2020).
13. Shen, X. et al. Effect of GR24 concentrations on biogas upgrade and nutrient removal by microalgae-based technology. Bioresource Technology 312, 123563 (2020).
14. Zhu, Q. et al. Effects of ambient temperature on the redistribution efficiency of nutrients by desert cyanobacteria- Scytonema javanicum. Science of The Total Environment 737, 139733 (2020).
15. Marticorena, P., Gonzalez, L., Riquelme, C. & Silva Aciares, F. Effects of beneficial bacteria on biomass, photosynthetic parameters and cell composition of the microalga Muriellopsis sp. adapted to grow in seawater. Aquac Res are.14711 (2020)